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Abstract

The spread of hate speech on social media platforms has become a rising concern in
recent years. Understanding the spread of hate is crucial for mitigating its harmful
effects and fostering a healthier online environment.

In this work, we aim to propose a novel model to capture the spread of Hate
Speech on Twitter. The model effectively captures how toxic a social network will
become when a tweet with a certain toxicity (hatefulness) is posted. We compute
a toxicity score for each tweet which indicates the extent of the hatefulness of that
tweet. Previous work, such as SIR (Susceptible-Infected-Recovered) models and their
variants, use a threshold-based binary approach and therefore are not suitable for
modelling this situation as toxicity exists on a spectrum. Spread-activation models
(SPA) often treat hate as energy and use energy-conservation principles to model
its spread. By analysing a dataset of 19.58𝑀 tweets from January 2017 to October
2017, we observe that the total toxicity, as well as the average toxicity per user, is
not conserved but rather increases over time. The previous works do not address the
question of how much hate a single tweet can generate or the extent to which a social
network becomes more hateful over time.

We, therefore, propose a novel model to capture the spread of toxicity, where in
we divide the users into three categories: Amplifiers (who receive less hateful tweets
than they send out), Attenuators (who receive more hateful tweets than they send
out) and Copycats (who send what they receive). Our model is able to reproduce the
increase in the total and average toxicities per user for simulated Barabási–Albert
graphs as well as real-world graphs. Additionally, the proposed model also effectively
reproduces the behaviours of the categorised users.

Analysing the user behaviours and the spread of toxicity in our proposed model
may also suggest more practical and effective ways of inhibiting the spread of the
spectrum of hate on Twitter.
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Chapter 1

Introduction

“They deserved it” were the words of a man who brutally murdered worshipers at
a Pennsylvania synagogue. He was very active on a white supremacist social media
platform and posted hateful content1. Social media has become an integral part of our
lives; it has changed the way we communicate, express ourselves, share information
and interact with each other. Twitter is a popular platform for public discourse,
where users on the platform share their thoughts and opinions. With that said, there
are adverse effects of social media, such as online harassment, cyber-bullying, hate
speech etc. Hate speech has often been categorised as “trolling”, but its severity and
brutality has grown more alarming in recent years. Hate Speech has led to dreadful
scenarios like the anti-Muslim mob violence in Sri Lanka2, the Pittsburgh synagogue
shooting3, the Rohingya genocide in Myanmar4, and the shooting at the Sikh temple
in Wisconsin5.

The Observer Research Foundation released a study [1] which, based on statistical
mapping of hate speech accounts on online social media, found that there was a strong
correlation between online hate speech and offline violence. The report cited several
cases where hate speech online led to mob attacks, lynching, riots and several other
atrocities in India. Although big tech giants such as Facebook and Twitter have strict
rules against hate speech, they fail to moderate it well and take necessary action to
curb it6. A study found that suicide rates among ethnic immigrant groups strongly
correlate to the hate speech directed towards them [2]. Olteanu et al. modelled the

1https://www.washingtonpost.com/nation/2018/11/30/how-online-hate-speech-is-fueling-real-life-violence/
2https://www.theguardian.com/world/2018/mar/14/facebook-accused-by-sri-lanka-of-failing-to-control-hate-speech
3https://www.nytimes.com/2018/10/27/us/active-shooter-pittsburgh-synagogue-shooting.html
4https://www.reuters.com/investigates/special-report/myanmar-facebook-hate
5https://www.bbc.com/news/world-us-canada-19143281
6https://www.technologyreview.com/2018/12/28/1527/

facebooks-leaked-moderation-rules-show-why-big-tech-cant-police-hate-speech/
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volume and type of hate speech on Twitter and Reddit and analysed its effects. They
found that extremist violence caused a rise in online hate speech [3].

This brings attention to a dire need to understand and map what is happening to
hate speech; How is it spreading? Can we understand user behaviour and dynamics
facilitating the spread of hate? Through our work, we aim to look at the spread of
hate speech on Twitter, analyse the factors contributing to its spread and understand
user behaviour.

Before we begin our work, we first have to understand and establish the meaning
of “Hate”. “What is Hate” is a complex social sciences problem, but the spread of
hate on a given network becomes a computer science problem and can be addressed
with machine learning and social network analysis. Countries worldwide have different
approaches to addressing hate speech with their respective legislative frameworks and
legal systems7. ElSherief et al. performed a linguistic analysis of hate speech in social
media. They defined hate as a “direct and serious attack on any protected category
of people based on their race, ethnicity, national origin, religion, sex, gender, sexual
orientation, disability or disease.” [4]. The Twitter policy of Hateful Conduct defines
hate similarly8. We have used a machine learning algorithm called Perspective9 and
have assigned a toxicity score in the range [0-1] to each tweet; this suggests how toxic
or hateful a tweet is. For our research, we are bound by the definition of hate as that
of perspective API. We shall go by the following definition of hate in our work.

“We define ‘Toxicity’ as a rude, disrespectful, unreasonable comment that is likely to
make someone leave a conversation.”

Previous work looked at various important aspects of hate spread but do not ad-
dress the question of how much hate a tweet could generate, or how hateful (toxic)
a social network would become over a period of time. Our analysis shows that cap-
turing hate speech using Spread Activation Modelling (SPA) and SIR (Susceptible
- Infected - Recovered) models is insufficient for our approach. SIR models assume
that any user is in one of a few sets of states at any given time, such as: “infected
(hateful), “exposed”, “recovered”(not hateful), etc. In our case, each user may send
and receive messages with various toxicities in the range [0-1]. Further, we observed
that toxicity in the social network is increasing over a period of time. Since toxicity

7https://www.cfr.org/backgrounder/hate-speech-social-media-global-comparisons
8https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
9https://perspectiveapi.com/
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is not conserved, the SPA model and its variants are not suitable for modelling the
toxicity of a network. Therefore, we need a new model to examine toxicity spread on
social networks.

We, therefore, propose a new model to capture the spread of the spectrum of hate
speech. Our model is based on user behaviour and captures the two important fac-
tors, a) Toxicity exists as a spectrum, and b) Toxicity is not conserved. We divide
the set of users can be into 3 categories: “amplifiers”, who spread more hate than they
receive; “attenuators”, who spread less hate than they receive; and “copycats”, who
spread as much hate as they receive. We empirically establish the extent of spread;
we call it the shift of the users into three different categories can have. We empirically
validate the proposed model on both the simulated Barabási–Albert (BA) graphs of
various sizes as well as samples of real worlds graphs from the data we studied. For
BA graphs, we borrow the shifts and the distribution of users in three categories from
the empirical observation. Our model is able to reproduce for both types of graphs
the expected increase in toxicity, as well as the impact of the position of the three
categories of users in the social network.

Chapter 2 of the thesis provides a comprehensive literature review, exploring pre-
vious work, such as using Spread Activation(SPA) modelling, Belief propagation, SIR
models and their variants etc., to study the spread of hate. Chapter 3 outlines the
research methodology, including information about the dataset, pre-processing, anal-
ysis of the dataset and our conclusion of the analysis. Given our learnings from the
analysis, Chapter 4 presents a new approach to mapping the spread of hate speech.
We propose a new model. In Chapter 5, we run the model on random graphs and
test it out thoroughly. Finally, Chapter 6 provides a conclusion and a summary of
the research findings and discusses some future work.

3
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Chapter 2

Review of Literature

In this section, we comprehensively review some of the related literature. Our pri-
mary focus is to look at literature about the spread of hate speech on Twitter and
how it propagates on a network. We have primarily cited two research studies in our
work. They are spread Activation Modelling (SPA) and SIR (Susceptible - Infected -
Recovered) models and their variants.

Spread Activation (SPA) is a method for modelling how specific energy (influence
or information) spreads over a network of connected nodes (individuals/ groups).
SPA captures the dynamics of information diffusion and the effects of the diffusion in
the network [5]. Two things happen in the process: node activation and the spread
amount. In each iterative step, there are a set of activation nodes. An active node
will transfer its energy to its neighbour in the process of activating it. Each set of
active nodes will start with an initial energy 𝐸, and at each successive step, a portion
of the energy is transferred to its neighbours while retaining the remaining for itself.
The total amount of energy in the network does not change at each iteration step.
Hence the energy in SPA is conserved [6]. Ziegler and Lausen used SPA for trust
propagation and propagated an algorithm through a network of agents based on the
similarity between their interests and expertise. The authors found that this algo-
rithm effectively evaluated local group trust relationships between individuals on the
Semantic Web. They found that the algorithm performed well under different scenar-
ios and provided reliable [7]. Nagar et al. presented a new approach to capturing the
spread of hate on Twitter using SPA. The work shows how SPA and TopSPA perform
better than baseline models for capturing the spread of hate. The study’s empirical
findings show that TopSPA and SPA perform better than standard approaches to
detecting the spread of hate speech on Twitter. They specifically demonstrate that

5



TopSPA outperforms SPA in capturing the spread of various types of hate speech, as
it incorporates topic-specific energy dissipation variables for each vertex. They use
latent topic modelling to detect hate forms. The authors also discuss the character-
istics of various types of hate speech and their network propagation methods [8].

SIR (Susceptible - Infected - Recovered) models are primarily used in epidemi-
ological studies. These models divide the population into three groups; Susceptible
(S), Infected (I) and Recovered (R). These models use ordinary differential equations
(ODE) to show how an infectious disease spreads over time in a closed population.
These models could also be modified to include other factors. A standard simple SIR
model with its ODE is defined as the following1:-

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼

𝑁
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼

(2.1)

where 𝑁 = 𝑆 + 𝐼 +𝑅 in equation 2.1.

A study established a model for how information spreads through social networks.
The simulation experiment results demonstrate that the proposed SEIR-based model
can describe the information diffusion process over a social network [9]. Wang et
al. showed that the emotional content of tweets serves as a crucial signpost for the
information being forwarded by the recipient. They proposed the ESIS model, which
is based on the SIS model and uses the proportion of information sent with an emo-
tional quality as an edge weight. It outperformed the SIS model [10]. Other similar
works, such as S-SEIR(Single Layer - SEIR) [11], SCIR (Susceptible Contacted In-
fected Removed) [12], irSIR (Infection Recovery SIR) [13], FSIR (Fractional SIR) [14]
models also account for nuances of information spreading on social media platforms.
Caldera et al., using time series, found out that the impact of hate speech is more
and spreads faster [15].

Ribeiro et al. characterised users on Twitter; they compared hateful users with
normal users. Contrary to popular belief, they find out that hateful users are actually
at the centre of their social network [16]. This method, along with belief propagation,
was used by Mathew et al. [17] to capture the spread of hate speech on Gab. Mathew
et al. found that when compared to content created by normal users, hateful users

1https://docs.idmod.org/projects/emod-generic/en/2.20_a/model-sir.html
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content tends to spread faster, farther, and to a larger audience. They generate
a belief diffusion network where they initialise hateful users with energy 1 and all
other users with 0. Then they use the DeGroots learning model to propagate beliefs
through the network. The diffusion model identifies the users who are not hateful
but have a high potential to be hateful using homophily. Hateful users are 0.67% of
the total users and are highly connected to one another and produce close to 1/4th
of the content on Gab.

Hate speech is a very complex problem; it brings attention to several crucial
other concepts. Maity et al. studied incivility on Twitter and found a strong cor-
relation between the acts of incivility and the difference of opinion between users
involved [18]. Chandrasekharan et al. used Bag of Communities (BoC) to detect
abusive content [19]. Gunasekara and Nejadgholi 2018 used an SVM classifier along
with word embeddings, recurrent neural networks, and attention mechanisms to iden-
tify toxic language [20]. Sood et al. showed the flaws of profanity detection systems
and how the systems don’t consider the specific context and domain [21]. Chau et
al. did a network topology analysis on blog hyperlinks (web pages) to identify hate
communities [22]. Zhou et al. used the multidimensional scaling (MDS) algorithm to
illustrate the proximity of hate websites and express the degree of similarity between
them [23]. Zhang et al. used a deep neural network with graph convolutional net-
works; they found that this method outperformed 6 out of 7 datasets [24].

In recent works, Saha et al. looked at the spread of “fear speech” on Gab. They
found that fear speech users gain more followers and occupy central positions in the
network. Additionally, they can more effectively engage with normal users than hate-
speech users [25]. Maarouf et al. found out that hateful content written by verified
users is disproportionately more likely to go viral than content written by non-verified
users [26]. Uyheng and Carley looked at Twitter conversations related to COVID-19
and proposed a dynamic network framework to characterise hate communities. They
find that higher levels of community hate are consistently associated with smaller,
more isolated, and highly hierarchical network clusters across both contexts [27].
Pérez et al. improved the performance of a transformer-based machine learning model
by incorporating additional contextual information, leading to enhanced results [28].
Mnassri et al. implemented transformer-based language models such as BERT to
improve classification results for hate detection [29]. By reviewing various relevant
studies, we are provided with a certain foundation to work upon. Chapter 3 looks at
hate speech on Twitter.

7
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Chapter 3

Hate Speech on Twitter

3.1 Dataset and Preprocessing

We have used the Dataset published by Ribeiro et al. [30]. This Twitter dataset1

contains 100,386 users and 19.58 million tweets. The majority of the tweets in the
dataset are from the months of January 2017 to October 2017. The dataset also has a
directed retweet graph 𝐺 = (𝑉,𝐸), where each node 𝑢 ∈ 𝑉 represents a Twitter user.
Each edge (𝑎, 𝑏) ∈ 𝐸 represents a retweet in the network; there will be an edge from 𝑎

to 𝑏 if 𝑏 retweets 𝑎. The retweet graph has 2, 286, 592 edges. A study also shows that
retweets graphs are better than follower-following graphs in analysing the influence of
users [31]. Every tweet in the dataset is categorised into an original tweet, retweet or
quoted tweet (retweet with additional text/ comment). The tweets are only text data,
there is no image, video and audio data in the dataset. Using a random crawling algo-
rithm, this dataset contains the 200 most recent tweets of 100,386 users. The creators
of the dataset also label some users as hateful or normal; the labels are available for
4,972 users, out of which 544 users are labelled as hateful and the other as normal [30].

Before beginning our analysis, we assigned each tweet a toxicity score using the
Perspective API2. All the 19.58 million tweets in our dataset have a toxicity score.
Perspective is a machine learning algorithm that predicts the impact that a comment
(text) could have on a conversation. By evaluating several attributes such as toxicity,
severe toxicity, profanity, identity attack, threat, sexually explicit and insult, a score
between the range of 0 to 1 is returned. The toxicity score helps us understand the
extent of hatefulness in a tweet. This score is a probability score which reflects how

1https://www.kaggle.com/datasets/manoelribeiro/hateful-users-on-twitter
2https://perspectiveapi.com/
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likely a reader perceives the comment. If the toxicity score is 0.8, this means that 8
out of 10 people will find this comment toxic. After assigning each tweet a toxicity
score, we filtered the dataset to include the tweets from January 2017 to October
2017. We decided to study the spread of toxicity in this timeline. Table 3.1 shows
the shape of the dataset before and after pre-processing.

Count Before Preprocessing After Preprocessing
Rows 19.58 M 17.22 M

Columns 24 26
Nodes (users) in graph 100,386 99,980

Edges in graph 2,286,592 2,272,251

Table 3.1: Shape of the Dataset and Graph; Before and After
Pre-Processing

We analyzed the network properties of the graph to enhance our understanding
of the structure of the graph. This gave us insight into how well and to what extent
the nodes were connected with each other.

Figure 3-1: Twitter Retweet Graph - Communities
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Table 3.2 lists some of the important network properties of the graph. These
network properties provide insights into the structural characteristics of the graph.

Network Properties Value
Clustering Co-efficient 0.056
Modularity 0.62
No: of Communities 18
Assortativity 0.104
Bow-Tie Structure S: 91,914, IN: 8,471, OUT: 1

Table 3.2: Network Properties of the Twitter Re-Tweet Graph

The clustering coefficient measures the degree to which nodes in a graph tend to
cluster together. A value of 0.056 suggests that the graph exhibits a relatively low
level of clustering, indicating that nodes are not strongly interconnected within local
clusters. Modularity is a measure of the division of a graph into communities or mod-
ules. A value of 0.62 indicates relatively high modularity, suggesting that the graph
has distinct communities or groups of nodes that are more densely connected within
themselves. This was calculated using the Louvain community detection method in
Gephi [32], and the number of communities is 18 in the graph. The preference of
nodes to connect with other nodes with similar degrees is measured by Assortativ-
ity. 0.104 as a value indicates a slight positive assortativity. The bow-tie structure
is a conceptual model used to understand the structure of large-scale networks. It
consists of four components: the strongly connected component (S), the input com-
ponent (IN), the output component (OUT), and tendrils. In this case, the strongly
connected component (S) contains 91,914 nodes, the input component (IN) contains
8,471 nodes, and the output component (OUT) contains 1 node.

(a) In-Degree Distribution (b) Out-Degree Distribution

Figure 3-2: Degree Distribution of the Twitter Retweet Graph
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Figure 3-2 shows the In-Degree and the Out-Degree distribution of the retweet
graph plotted on a log-log scale. The in-degree distribution refers to the frequency of
incoming edges to each node in the graph. In other words, it quantifies the number
of connections directed towards a specific node. On the other hand, the out-degree
distribution represents the frequency of outgoing edges from each node in the graph.
It illustrates how many connections a particular node establishes with other nodes.

3.2 Analysing the Dataset

We start by looking at what is happening to toxicity over the timeline. The dataset
consists of tweets collected across ten months (or forty-four weeks). Figure 3-3b shows
the total toxicity across all the months, and Figure 3-3a shows the total toxicity across
all the weeks. Both figures are plotted on a logarithmic scale on the y-axis for better
visualisation.

(a) Total Toxicity Over the Weeks (b) Total Toxicity Over the Months

Figure 3-3: Total Toxicity Distribution over the Timeline

We can see that there is a rise in toxicity over time. This could happen because
the number of users and tweets over time is increasing. Not all the users in the dataset
are present in all months and weeks. To understand this further and eliminate the
effect of users entering/leaving the system, we look into what is happening to the
average toxicity of original tweets and retweets.

Figure 3-4 shows us what is happening to the average toxicity of all original tweets
over all the weeks. We see an evident rise in toxicity. One thing from this is clear
that the net toxicity after normalisation (in this case, the average) is increasing. We
do the same analysis for retweets.

12



Figure 3-4: Average Toxicity of Original Tweets Over the Weeks

Figure 3-5 shows what is happening to the average toxicity of retweets over all the
weeks. Here also we see an apparent increase in toxicity over time. We see that the
highest value of average toxicity in retweets is more than that of original tweets. We
see that in our dataset, retweets spread more hate. Evkoski et al. show that hateful
tweets are retweeted more significantly than non-hateful tweets [33]. The analysis
from our dataset can also back this. Figure 3-6 shows that tweets with higher toxicity
values are retweeted significantly more than the tweets with low-toxicity values. While
the count of high-toxicity tweets is also very less as compared to low-toxicity tweets

Figure 3-5: Average Toxicity of Retweet Over the Weeks
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Figure 3-6: Number of Retweets and Average Retweets for each tweet as
per Toxicity

Figure 3-7: Number of Unique Users in each Tweet Category
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We now wanted to look at the distribution of users and the type of tweets (original,
retweet and quoted) users tweeted. Figure 3-7 shows the number of unique users in
a particular tweet category over all the months. By tweet category, we mean the
various combinations of original tweets, retweets, and quoted tweets. For example,
if a user has five tweets consisting of three original and two retweets, they would be
counted in the “original and retweet” category. Similarly, if a user has ten tweets with
five originals, four retweets, and one quoted tweet, they would fall into the “original,
quoted, and retweet” category. Upon analysing Figure 3-7, we observed a significant
increase over time in the number of users who shared a combination of original and
retweeted tweets. The y-axis of the plot is displayed on a semilog scale to provide a
clear visual representation of this trend.

Figure 3-8: Number of Users and their Tweets Toxicity Levels

15



3.3 Conclusion of the Analysis

From our analysis of the data in section 3.2, we come to two important conclusions.
They are as follows: -

1. Energy (Hate) is not conserved.

It is evident that energy (hate) is not conserved. The total toxicity and average
toxicity per tweet consistently increase with time (weeks and months). This
observation aligns with the findings depicted in Figures 3-3a,3-3b, 3-4, and 3-5,
demonstrating an upward toxicity trend over time. Plots 3-4 and 3-5 provide
further insight by revealing that the average toxicity increases over time. This
shows that the SPA model is insufficient to capture the spread of hate.

2. Users respond differently to tweets of different toxicities

Categorising a user as hateful or non-hateful involves assigning them a discrete
state. This classification is typically determined by applying a threshold to the
user’s toxicity levels. If a user’s toxicity surpasses the threshold, they are con-
sidered hateful; otherwise, they are categorised as non-hateful. Using discrete
states in SIR models to represent the spread of hate proves insufficient to us,
as it fails to consider non-hateful users’ toxicity adequately. Furthermore, de-
termining an appropriate threshold for classification is context-dependent and
may vary across research studies, heavily relying on how toxicity classifications
are assigned to tweets. From Figure 3-6, we see that users respond differently
to tweets of different toxicities.

Based on these findings, the upcoming chapter will introduce a novel approach to
effectively model the spread of hate speech on Twitter.
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Chapter 4

A Non-Conservational Model for
Hate Spread

With our learnings from Section 3.3, we proceed towards building a new model that
captures the spread of hate speech. This chapter focuses on developing the model
and provides simulations of the model using small, directed graphs as illustrative
examples.

4.1 User Classification

We look at user behaviour and in order to understand the influence of the social
network upon a user and vice-versa, we compare a user’s average toxicity with the
average toxicity of the user’s indegree neighbours. Figure 4-1 shows us a scatter plot
of the average toxicity of the user versus its neighbourhood. Since we are considering
only the predecessors of every node, this plot consists of 92, 847 users. For visual
clarity, we divide the plot into four quadrants as shown in 4-2.

The top right is quadrant I, and the remaining quadrants are sequentially in a
clockwise direction. Users in quadrant III (bottom left) and quadrant I (top left) show
similar average toxicity levels as their neighbours. We call such users as copycats, since
their outgoing average toxicity closely mimics their incoming average toxicity. Users
in quadrant II have higher average toxicity levels as compared to their incoming
neighbours, so we call such users amplifiers since they amplify the toxicity they
receive. Note that these users may also be the generators of toxic content. Users
in quadrant IV have lower average toxicity compared to their incoming neighbours.
We call these users attenuators.
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Therefore we classify our users into three categories: amplifiers, attenuators, and
copycats.

Figure 4-1: Average Toxicity of a User versus Average Toxicity of its
In-Degree Neighbourhood

Figure 4-2: Average Toxicity of a User versus Average Toxicity of its
In-Degree Neighbourhood - with quadrants

We then analyse the distribution of the difference between a user’s average tox-
icity and the average toxicity of their neighbourhood. Figure 4-3 displays a plot
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representing the distribution of users based on the difference between their average
toxicity and the average toxicity of their in-degree neighbourhoods. However, visual
examination alone does not provide conclusive evidence regarding the normality of
the distribution. Therefore, we employ statistical tests to determine its normality.

Figure 4-3: Distribution of the difference between a user’s average
toxicity and the average toxicity of their In-Degree Neighbourhood

First, we implemented the Shapiro-Wilk test [34] of normality, which showed that
the distribution did not pass the test, suggesting it is not normally distributed. Then,
we conducted the Kolmogorov-Smirnov test [35], which also yielded a negative result,
further indicating that the distribution does not follow a normal distribution. In addi-
tion, we explored further divisions within the toxicity buckets. Currently, Figure 4-3
displays the toxicity intervals as 0.1. However, we also examined intervals of 0.01 and
0.001 and conducted normality tests on each of them. Despite the finer divisions, the
distributions failed the normality tests, indicating that they did not follow a normal
distribution.

In cases where a distribution deviates from normality, the Interquartile Range
(IQR) proves to be a valuable measure. IQR is used when a distribution is not
normally distributed as it is a reliable measure of variability unaffected by outliers
or extreme values. It does so by dividing the data into equal parts or quartiles. The
quartiles Q1, Q2 and Q3 are calculated by sorting the data in ascending order. Before
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beginning to model, we wanted to categorise all the users in the graph, i.e. find the
amplifiers, attenuators and copycats. With our understanding from Figure 4-2, we
tried to find out the outliers in the distribution of users and the difference between
their average toxicity and the average toxicity of their in-degree neighbourhoods. To
find outliers in data, IQR has a lower limit and an upper limit; all the values above
the upper limit and below the lower limit are considered outliers. The lower and
upper limits are defined as follows.

𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡 = 𝑄1− 1.5× 𝐼𝑄𝑅

𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 = 𝑄3 + 1.5× 𝐼𝑄𝑅
(4.1)

By calculating the IQR, we obtained a value of 0.03809. This allowed us to
determine the lower limit value, i.e. −0.07507, and the upper limit values, i.e. 0.07731,
for identifying outliers within the dataset. With these limits established, we examined
the dataset and found that out of the 99, 860 users, a total of 6, 252 users were
identified as outliers. After this, we use the lower and upper limits to categorise
amplifiers and attenuators. Of the 6, 252 outliers, 4, 954 were amplifiers, and 1, 298

were attenuators. This means amplifiers account for 5.33% of the total users, while
attenuators comprise 1.39% of the user population. All the remaining users were
categorised as copycats.

Upon categorising the users, we determined the toxicity shifts for each category.
These shifts indicate the amount of change in incoming toxicity that a user will
generate and subsequently transmit as outgoing toxicity. The shifts are calculated
by averaging the toxicity levels of all users within the respective category. We found
that the shift caused by copycats is −0.000497, by amplifiers is +0.1133, and by
attenuators is −0.1022. Table 4.1 presents the shifts and user proportions for each
user category.

User Categories Toxicity Shift User Proportion
Amplifiers +0.1133 5.33%

Attenuators -0.1022 1.39%
Copycats -0.000497 93.28%

Table 4.1: Toxicity Shifts and User Proportions for each User Category
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4.2 Theoretical Formulation of the Proposed Model

We model the flow of toxicity per tweet. It takes into account all incoming toxicity
(tweets) and applies the corresponding shift based on the user’s category. The model
then forwards the adjusted toxicity ahead. We created two versions of the model:
a sum variant and an average variant. We proceeded with the sum variant because
it directly incorporates the toxicity values from all incoming tweets, addressing the
concern that the average variant might not do that. In the sum variant, the model
aggregates the toxicities of the tweets a user receives from its predecessors, applies
its respective shift and subsequently sends it to its successors.

We make a few assumptions in order to define our model:

1. We consider the network to be static - users do not enter or leave the system.
2. Rather than compute each user’s toxicity shift for each range of toxicity, we
consider only averages.
3. A user’s classification does not change with time.
4. A tweet is forwarded endlessly. The simulation stops if it reaches a node that
has no further successors.

Given the assumptions, our model can still factor in the user and tweet fluctuation.
We consider a directed graph 𝐺 = (𝑉,𝐸) with 𝑁 nodes and 𝐸 edges, representing

the network structure of our study. Each node in the graph 𝑢 ∈ 𝑉 represents a user
on the social media platform. The set 𝑇 = 𝑇1, 𝑇2, . . . , 𝑇𝐾 represents the timestamps
at which we observe the spread of hate speech in the network; these could be days,
weeks or months.

At the initial timestamp 𝑇0, a specific node 𝑣 posts a tweet with a toxicity value
denoted as 𝑡𝑜𝑥 (a node could also post multiple tweets with different toxicity values).
This toxicity value represents the degree of hatefulness of the tweet. The shift ap-
plied by each node in the network for the toxicity received will depend on its user
category and can be denoted as shift(𝑣). These shift values capture the individual
propensity of nodes to amplify or suppress the toxicity of the content they receive.
The total toxicity of the network at 𝑇0 is toxicity(𝑇0) = tox. Each neighbour of node
𝑣 will have a specific shift based on its user category denoted by shift(nbr(v)). This
shift will be added to tox and the updated value of toxicity for that tweet will be
tox = tox + shift(nbr(v)).

To compute the toxicity in the network at each subsequent timestamp, we employ
the following algorithm, as depicted below.
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Algorithm 1 Compute Toxicity in a Twitter Retweet Network
Input:

• 𝐺: A directed graph.
• 𝑐𝑜𝑝𝑦𝐶𝑎𝑡𝐿𝑖𝑠𝑡, 𝑎𝑡𝑡𝑒𝑛𝐿𝑖𝑠𝑡, 𝑎𝑚𝑝𝐿𝑖𝑠𝑡: Lists of nodes of respective user categories.
• 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝: The number of time steps

Output:

• A dictionary of the toxicity levels of each node at each timestamp.

1: values : A dictionary mapping nodes to their toxicity values
2: values[v] = tox
3: for each timestamp 𝑡 in 𝑇 do
4: 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦(𝑡) ←

∑︀𝑛
𝑖=1 𝑣𝑎𝑙𝑢𝑒𝑠[𝑣𝑖], 𝑛 ∈ number of nodes {Total toxicity at times-

tamp 𝑡}
5: for node 𝑣 in values that are not empty i.e. in the current timestamp do
6: for successors of node 𝑣 do
7: Let 𝑣nbr be the receiving neighbor of 𝑣
8: if 𝑣nbr in a certain user category then
9: shift(nbr(v))← shift(v) {Check for user category; attenuators, amplifiers

and copycats have their respective shifts}
10: end if
11: tox ← tox + shift(nbr(v)) {A neighbour who has received a tweet applies

the shift to the received tweet and further forwards a tweet with updated
toxicity}

12: if tox > 1 then
13: tox← 1

14: else if tox < 0 then
15: tox← 0

16: end if
17: values[𝑣𝑛𝑏𝑟]← tox
18: end for
19: end for
20: values[𝑣]← clear {clear the values of node v}
21: end for
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4.3 Demonstration on an Example Graph

To gain a better understanding of the model described in algorithm 1, we demonstrate
the model using a small graph. Let’s look at Figure 4-4, which demonstrates the model
using a small example of a directed graph.

Figure 4-4: A small example graph.

In Figure 4-4, we just demonstrate the model on a small graph with four nodes.
To simulate the model, we begin with Node 1 and initialise it with two tweets having
a toxicity value of 0.9 and one tweet with a toxicity value of 1. The format for denot-
ing the tweets toxicity and their count is “toxicity value: count of tweets”. As this is
a demo example, we manually assign Node 1 as an amplifier, Node 2 and Node 4 as
copycats, and Node 3 as an attenuator. Additionally, we define the toxicity shifts for
amplifiers to be +0.1, for attenuators to be −0.2, and for copycats to be −0.1. Lets
begin with the simulation, Node 1’s outgoing toxicity is initialised as 0.9 : 1, 1 : 1.
This toxicity is subsequently received by Node 2 and Node 4, the successors of Node
1. These nodes receive the toxicity, apply their respective shifts, and pass it on to
their successors.

Table 4.2 demonstrates the full simulation in detail. The final two columns show
the sum of toxicity and average toxicity per user at each timestamp. We can easily ob-
serve that the total and average toxicity in the network is not conserved. The changes
in the total toxicity also depend on the configuration of the copycats, attenuators and
amplifiers.
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Time Node 1 Node 2 Node 3 Node 4
Total

Toxicity

Average
Toxicity
per User

In-
Coming

Shift
Out-
Going

In-
Coming

Shift
Out-
Going

In-
Coming

Shift
Out-
Going

In-
Coming

Shift
Out-
Going

0
0.9:2,
1:1

0.9:2,
1:1

0.9:2,
1:1

2.8 0.933

0.8:2,
0.9:1

0.8:2,
0.9:1

1
0.8:2,
0.9:1

0.8:4,
0.9:2

0.8:2,
0.9:1

5 1.25

0.6:4,
0.7:2

2
0.6:4,
0.7:2

0.6:4,
0.7:2

0.6:4,
0.7:2

3.8 0.95

0.5:4,
0.6:2

0.5:4,
0.6:2

3
0.5:8,
0.6:4

0.5:4,
0.6:2

0.5:4,
0.6:2

6.4 1.6

0.6:8,
0.7:4

4
0.6:8,
0.7:4

7.2 1.8

Table 4.2: Demonstration of the model on an example graph as shown in
Figure 4-4

Let’s look at another such example to illustrate the model, and for simplicity,
let’s just focus on the outgoing toxicity. The small example graph is shown in Figure
4-5. We use the same parameters and shifts as used in Table 4.2. Node 1’s outgoing
toxicity is initialised as 0.9 : 1, 0.7 : 2. Here too, we clearly see a rise in total toxicity
and the average toxicity per user is not conserved. The simulation is demonstrated
in Table 4.3.

Figure 4-5: A small example graph. The blue nodes are the copycats, the
green node is an attenuator, and the red node is an amplifier.
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Time Node 1 Node 2 Node 3 Node 4 Node 5
Total

Toxicity

Average
Toxicity
Per User

0
0.9: 1,
0.7: 2

2.3 0.575

1
0.8: 1,
0.6: 2

0.8: 1,
0.6: 2

4 1

2
0.6: 2,
0.4: 4

2.8 0.7

3
0.5: 2,
0.3: 4

2.2 0.55

4
0.6: 2,
0.4

2.8 0.7

Table 4.3: Demonstration of the model on an example graph as shown in
Figure 4-5

4.4 Amplifier, Attenuator and Copycat Characteris-

tics

In this section, we analyse the characteristics of amplifiers, attenuators and copycats,
both in terms of their network properties and their behaviour. Several natural ques-
tions arise. For example, How does the average toxicity of an amplifier vary with its
outdegree? Do users display any kind of consistent behaviour?

Figure 4-6: Average Toxicity of a User versus its Out-Degree
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Figure 4-6 shows the scatterplot of the average toxicity of each node plotted against
its outdegree for amplifiers, attenuators and copycats. We observe that the outdegrees
of the copycats are among the highest. The average toxicities of the attenuators are
less than those of the amplifiers, but for a given outdegree, there are more amplifiers
than attenuators. There are quite a few copycats with large average toxicity but low
outdegree.

Figure 4-7: Average Toxicity of a User versus its Hub Value (PageRank
on outdegrees)

Figure 4-7 shows a similar plot with hub values on the Y-axis. The highest hub
values belong to the copycats, clearly highlighting their dominant role in the spread
of toxicity.

Figure 4-8: Average Toxicity of a User versus its PageRank - InDegree

Figure 4-8 shows a similar plot with PageRank on the Y-axis. The highest pager-
ank values belong to the copycats, indicating their importance as recipients of links.
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Figure 4-9: Tweet Distribution of each User Category. ’o_r’ is the tweet
category of ’original and retweets’, similarly ’o_q_r’ is ’original, quoted

and retweets’ tweet category

Figure 4-9 shows the number of users of each category active across the combina-
tions of the actions of sending original tweets, retweets and quoted tweets. In each
bucket, once again, we find that the copycats have an order of magnitude more num-
ber of users participating in the set of activities represented by the bucket. Further,
note that the number of amplifiers who are sending original tweets and retweets is
almost 5 times the number of attenuators indulging in the same two activities. The
same is true of the amplifiers and attenuators doing all the 3 activities.

User Category Attenuator Amplifier CopyCats
Attenuator 7.26e-18 0.02068 0.02844
Amplifier 0.02068 0 0.10937
CopyCats 0.02844 0.10937 0

Table 4.4: Attribute Assortativity Co-efficient for User Category

How are the amplifiers, attenuators and copycats distributed in the network? Are
the amplifiers(attenuators) well-connected among themselves? Table 4.4 shows a lack
of evidence for both homophily and inverse homophily for all types of users since all
the values in the Table are close to 0. This suggests that the amplifiers, attenuators
and copycats are almost randomly connected, without any preference or prejudice
among each other.
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Chapter 5

Results

To validate and test the model, we use Barabási–Albert (BA) graphs [36] as well as
the subgraphs sampled from our dataset.

BA graphs are used as testing grounds for network models due to multiple reasons,
the most important being that they represent real-world networks closely. They are
scale-free, meaning they have a characteristic of self-similarity across different scales.
They also follow the power law of degree distribution, which means that there are few
nodes with a high degree (more number of connections), and there are many nodes
with a low degree (fewer connections). This property shows us the rich-gets-richer
phenomenon seen in many real-world networks1. BA graphs are generated through
a mechanism of growth and preferential attachment. Growth is a process of adding
nodes to the network, and preferential attachment is the probability that a link of
the new node connects to an existing node 𝑖 depending on the degree 𝑘𝑖 as,

Π(𝑘𝑖) =
𝑘𝑖∑︀
𝑗

𝑘𝑗 (5.1)

A new node is free to connect to any node in the network, whether it is a hub or
has a single link, but as shown in equation 5.1, if given a choice between a node with
a higher degree or a lower degree, it is twice likely to prefer the node with the higher
degree [37].

Apart from this, we also experimented with Erdős–Rényi graphs [38, 39] and
Watts–Strogatz graphs [40]. We could not get the desired results from these models,
that’s why we decided to proceed with BA graphs for testing the model. As we were

1http://networksciencebook.com/chapter/5#barabasi-model
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looking for a random graph that closely mimics the Twitter retweet graph as well,
providing a suitable random graph for our purposes.

We use the Python library NetworkX2 to generate the BA graphs. NetworkX, by
default, generates BA as undirected as seen in Figure 5-1a, but by nature, BA graphs
should be directed. We tweak the NetworkX function to make the generation directed
as shown in Figure 5-1b. And to make them resemble as close as the Twitter retweet
network, we reverse the direction of the edges as displayed in Figure 5-1c.

(a) Undirected Graph (b) Directed Graph

(c) Reverse Edge
Direction of Directed

Graph

Figure 5-1: Changes to the Barabási-Albert Graph (node size-50)

After this, to begin with testing, we use the toxicity shifts and user proportions
(percentage of amplifiers, attenuators and copycats) we calculated from our dataset
in Chapter 4 and as described in Table 4.1.

Through the experiments and testing, we aimed to address the following questions:

1. How does the proposed model behave when applied to the studied data and
Barabási-Albert Graphs? Do the categorised users (attenuators, amplifiers, and
copycats) behaviours studied from real data align with findings from Barabási-
Albert Graphs and Retweet graph?

2. Is there a temporal evolution of toxicity values? How do the toxicity values
evolve?

2https://networkx.org/
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In an attempt to answer the above questions, We tested the model on different
sizes of the BA Graphs i.e. 5,000, 10,000, 25,000, and 50,000 nodes. In each case,
we used an “𝑚” value of 5, which determines the number of edges connecting a new
node to the existing nodes. These graphs allowed us to test the model on a range
of different networks that sufficient variation in size and scale. We kept the value of
𝑚 constant to maintain consistency. To establish a starting point for simulating the
model, we observed that the initial nodes created during BA graph generation often
exhibited higher eccentricity. Hence, we selected the most suitable initial node for
the simulation of the model on BA graphs. We began the simulation by initialising
a node with one tweet of toxicity 0.0985. This value is the average toxicity of all the
tweets in the dataset.

Subsequently, we simulated the model on the retweet graph present in the dataset.
For these simulations, we focused on the subgraphs that were similar to the node
sizes used in the BA graphs. These subgraphs were extracted from certain timelines
(weeks and months) of the dataset. After that, for each respective subgraph, we
recalculated the toxicity shifts and identified the amplifiers, attenuators and copycats
by the method we followed in chapter 4. To find a starting point for the simulation,
we find the largest strongly connected component in the graph and selected a node
with the highest eccentricity as our initial node. And for each subgraph, we calculate
the average toxicity separately, and we initialise the starting node with one tweet of
toxicity value as the average toxicity in that timeline.

5.1 Results on Barabási–Albert Graphs

With the changes and setting up of the BA graphs, we initially just simulated our
model on different sizes of BA graphs. This didn’t give us data to compare and vali-
date the efficacy and effectiveness of the model. Therefore, we devised five scenarios
of testing to help us assess better. In these scenarios, nodes are assigned as amplifiers,
attenuators, and copycats to nodes of high and low degrees to see the effect of the
user behaviour and model better. The distribution of these categories is maintained
to match what is seen in the real data. The five scenarios are as follows:

1. Case 1 - All nodes are randomly assigned a user category.

2. Case 2 - Nodes with High Out-Degree are assigned as Attenuators, and the
remaining nodes are randomly assigned.
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3. Case 3 - Nodes with High Out-Degree are assigned as Amplifiers, and the
remaining nodes are randomly assigned.

4. Case 4 - Nodes with Low Out-Degree are assigned as Attenuators, and the
remaining nodes are randomly assigned.

5. Case 5 - Nodes with Low Out-Degree are assigned as Amplifiers, and the
remaining nodes are randomly assigned.

Table 5.1 shows the results of our model on different node sizes for all five case
scenarios. The values are the averages of the highest value of total toxicity in a
simulation. We record the average of five simulations for each case; through this, we
obtain a more reliable and representative measure of the model’s performance. The
last time stamp in the table for each node size tells that the simulation has reached
the end of the graph.

Nodes m Edges Time Case 1 Case 2 Case 3 Case 4 Case 5

5,000 5 24,846

2 2.45× 102 5.81× 101 6.3× 102 3.12× 102 2.21× 102

4 4.75× 106 1.06× 106 2.85× 107 5.74× 106 2.91× 106

6 2.11× 107 5.83× 106 1.23× 108 2.4× 107 1.14× 107

8 4.06× 107 1.55× 107 2.66× 108 4.53× 107 2.52× 107

36 8.26× 107 2.46× 107 3.87× 108 6.66× 107 3.31× 107

10,000 5 49,784

2 3.94× 102 8.2× 101 1.01× 103 3.72× 102 3.59× 102

4 1.38× 107 3.37× 106 8.23× 107 1.27× 107 7.66× 106

6 6.89× 107 1.78× 107 3.69× 108 6.34× 107 3.28× 107

8 1.48× 108 4.21× 107 8.62× 108 1.4× 108 7.47× 107

40 5.31× 108 1.48× 108 2.52× 109 4.09× 108 2.32× 108

25,000 5 124,812

2 5.81× 102 8.78× 101 1.55× 103 5.7× 102 4.95× 102

4 9.66× 107 2.34× 107 5.76× 108 8.42× 107 5.39× 107

6 6.11× 108 1.54× 108 3.56× 109 7.08× 108 3.15× 108

8 1.69× 109 4.71× 108 1.03× 1010 1.72× 109 9.13× 108

46 5.81× 109 1.93× 109 3.25× 1010 5.64× 109 2.25× 109

50,000 5 249,772

2 3.49× 103 3.8× 102 1.34× 104 3.48× 103 3.02× 103

4 5.06× 108 1.11× 108 2.77× 109 4.71× 108 2.47× 108

6 3.35× 109 9.03× 108 1.92× 1010 3.14× 109 1.7× 109

8 1.24× 1010 3.1× 109 6.24× 1010 1.12× 1010 5.13× 109

52 4.85× 1010 1.25× 1010 2.15× 1011 4.86× 1010 1.5× 1010

Table 5.1: Average of Highest Value of Total Toxicity in all 5 cases when
the model is simulated on BA Graphs. Note that Case 3, where the
amplifiers have the highest outdegree results in the largest toxicity.
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We clearly see the effect of the placement of attenuators and amplifiers on to-
tal toxicity. The change in toxicity also depends on the placement of attenuators,
amplifiers and copycats. But we see that with time and graph size increasing, the
total toxicity also increases. Attenuators exhibit their behaviour by reducing toxicity
when assigned to high out-degree nodes, while amplifiers display their behaviour by
increasing toxicity when assigned to high out-degree nodes.

Nodes m Edges Time Case 1 Case 2 Case 3 Case 4 Case 5

5,000 5 24,846

2 5.48× 102 1.1× 101 1.09× 103 4.29× 102 3.86× 102

4 1.66× 104 1.10× 101 6.82× 104 1.49× 104 1.28× 104

6 1.76× 104 1.11× 101 8.38× 104 1.83× 104 1.43× 104

8 1.81× 104 1.11× 101 9.06× 104 2.12× 104 1.46× 104

10 2.29× 104 1.09× 101 8.20× 104 1.95× 104 1.44× 104

10,000 5 49,784

2 8.35× 102 1.54× 101 2.53× 103 1.05× 103 8.42× 102

4 4.54× 104 1.49× 101 2.13× 105 4.71× 104 3.67× 104

6 5.22× 104 1.48× 101 2.64× 105 5.22× 104 4.06× 104

8 6.03× 104 1.50× 101 2.59× 105 5.47× 104 3.91× 104

10 4.76× 104 1.45× 101 2.40× 105 5.12× 104 3.88× 104

25,000 5 124,812

2 1.60× 103 2.65× 101 4.42× 103 1.56× 103 1.35× 103

4 1.32× 105 2.71× 101 7.01× 105 1.39× 105 1.05× 105

6 1.91× 105 2.69× 101 8.68× 105 1.70× 105 1.32× 105

8 1.74× 105 2.68× 101 8.26× 105 1.66× 105 1.15× 105

10 1.72× 105 2.67× 101 8.39× 105 1.55× 105 1.30× 105

50,000 5 249,772

2 1.13× 103 2.19× 101 3.14× 103 1.13× 103 1.12× 103

4 3.06× 105 2.20× 101 1.65× 106 3.52× 105 2.36× 105

6 3.42× 105 2.19× 101 1.92× 106 3.49× 105 2.56× 105

8 3.95× 105 2.19× 101 1.90× 106 3.49× 105 2.68× 105

10 3.28× 105 2.20× 101 1.85× 106 3.65× 105 2.58× 105

Table 5.2: Average of Highest Value of Total Toxicity in all 5 cases when
the decay variation of model is simulated on BA Graphs. Note that there
is very little difference in the toxicity values between 8 and 10 timesteps.

To make our simulations on the BA graphs even more real world like we make
modifications to the existing model. We incorporate an information value for each
tweet, ranging from [0-1], that gradually decays over time. Tweets are initialised
with an information value of 1 for the simulation. The information value decreases
by 0.1 at each time step during the simulation. The information value represents
the probability of a tweet being forwarded in the simulation. Once the information
value reaches zero, the tweet is removed from the system. Note that a tweet could be
deleted before its value reaches zero due to its probabilistic nature.
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Table 5.2 shows the results of the modified model for different node sizes, with an
average of 5 simulations recorded for each case on BA graphs. Here as well, we see
the increase in total toxicity and the effect of the placement of attenuators, amplifiers
and copycats in the network. Over time, the total toxicity doesn’t increase by much,
as tweets are deleted from the system.

Next, we simulate the model on the retweet network subgraphs as described in
Table 5.3. Here the five scenarios don’t hold valid as the attenuators, amplifiers and
copycats will always remain constant in a real-world retweet graph.

No:
of

Nodes

No:
of

Edges
Time Total Toxicity

5,278 2,447

2 1.2× 10−1

4 1.38× 101

6 5.34× 102

8 2.85× 104

7 5.38× 102

10,262 8,071

2 5.74× 10−2

4 1.34× 10−1

6 2.71× 10−1

8 3.34× 10−1

9 3.58× 10−1

24,118 56,214

2 2.29× 10−1

4 1.85× 10−1

6 8.33× 10−1

8 1.09× 101

44 5.08× 1035

51,358 429,639

2 1.4× 100

4 2.6× 102

6 5.18× 107

8 1.08× 1014

11 2.24× 1020

Table 5.3: Highest Value of Total Toxicity when the model is simulated
on Twitter Network subgraphs
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Here too, we evidently see that for each node size, there is a rise in total toxicity
values. Over time we also see a high rise in toxicity; this is due to the presence of
a high number of cyclic graphs of sizes 4 and 5. We removed all the self-loops and
cyclic graphs of sizes 2 and 3.

Through these results, we clearly see that the proposed model captures the spread
of toxicity on Barabási-Albert Graphs. As seen in the real data, we see that over time
and with an increase in graph sizes, the total toxicity also increases. It also shows
that toxicity values are temporal and change over time. The effect of user behaviours
can also be seen in Barabási-Albert Graphs.

The code for the simulation is listed in Chapter 7, Appendix section of the work.

5.2 Discussion

In the dataset we used [30], 543 users out of 4,972 were labelled hateful using crowd-
sourcing. How does the categorisation of hateful vs non-hateful users relate to our
approach of user categorisation into amplifiers, attenuators and copycats?

These two approaches, we believe, are complementary. Of the 543 labelled hateful
users, we found that 95 are amplifiers, 5 are attenuators, and 443 are copycats. This
is not a contradiction. As seen through various plots in this work, the attenuators,
amplifiers and copycats have average toxicity values in a wide range, suggesting that
any of them may or may not be hateful. In future work, it may be interesting
to consider both these axes as dimensions and analyse the 6 combinations: hateful
amplifiers, hateful attenuators, hateful copycats, non-hateful amplifiers, non-hateful
attenuators, and non-hateful copycats, and analyse their roles and behaviours in
detail. Although the analysis in the current work suggests that there might be few
(if any) hateful attenuators.
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Chapter 6

Conclusion

We propose a novel model for capturing the spread of hate in a social network, tak-
ing into account two important factors: the existence of hatefulness on a spectrum
and the non-conservation of hatefulness when treated as energy. Through empirical
analysis and observations, we classify users into three distinct categories: Ampli-
fiers, Attenuators, and Copycats. This categorisation allows us to model the spread
of toxicity more effectively by considering how users amplify, suppress, or mimic the
hatefulness they receive. To validate the efficacy of our proposed model, we conducted
experiments on both simulated Barabási–Albert graphs and a real-world dataset, and
our model successfully reproduces the increase in total toxicity and average toxicity
observed in the empirical data. The proposed model also effectively reproduces the
behaviours of the categorised users.

This model also raises many new questions. If more relevant data becomes avail-
able, then one might ask:

• What is the effect of users entering and leaving the system? How do we model
it?

• How consistent are the shifts applied by the users in the 3 categories? In this
paper, we calculated the average shift in each category of users. Do we need a
more refined picture? Does an amplifier(/attenuator/copycat) apply the same
shift to all levels of toxicity?

• Is this behaviour of a user constant? Over time, can an attenuator become an
amplifier?
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We hope that future work will address these and related interesting questions.

In summary, we propose a novel model to capture the spread of hate speech on
Twitter. This model could help in creating strategies to mitigate hate speech on
Twitter.
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Chapter 7

Appendix

The Appendix section consists of the code used for the work.

Listing 7.1: Simulating and Capturing the Spread of Toxicity in a Graph

def s imulate (G, copyCatList , a t t enL i s t , ampList , timestamp ,
plotTotalSumofTox , plotAvgToxPerUser , plotTimestamp ) :

"""
Simula tes the spread o f t o x i c i t y in a graph .

Args :
G: The graph .
copyCatLis t : A l i s t o f nodes t ha t are copyca t s .
a t t e nL i s t : A l i s t o f nodes t ha t are a t t enua t o r s .
ampList : A l i s t o f nodes t ha t are amp l i f i e r s .
timestamp : The number o f timestamps to s imu la t e .
plotTotalSumofTox : A l i s t to s t o r e the t o t a l sum of t o x i c i t y .
plotAvgToxPerUser : A l i s t to s t o r e the average t o x i c i t y per user .
plotTimestamp : A l i s t to s t o r e the timestamps .

Returns :
A d i c t i ona r y o f the t o x i c i t y l e v e l s o f each node at each timestamp .

"""

va lue s = {node : {} for node in G. nodes ( ) }
va lue s [ 1 ] = { tox_value : tweet_count}

for t in range ( timestamp ) :
tota l_va lue = 0
tweet_count = 0
for node_values in va lue s . va lue s ( ) :

for key , va l in node_values . i tems ( ) :
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tota l_va lue += key ∗ va l
tweet_count += val

avgToxPerUser = tota l_va lue / len ( va lue s . keys ( ) )
plotTotalSumofTox . append ( tota l_va lue )
plotAvgToxPerUser . append ( avgToxPerUser )
plotTimestamp . append ( t )

new_nodeList = [ ]
for node in G. nodes ( ) :

i f va lue s [ node ] != {} :
new_nodeList . append ( node )

for node in new_nodeList :
for succ in G. su c c e s s o r s ( node ) :

s h i f t = None
i f succ in copyCatList :

s h i f t = t o x i c i t y_ s h i f t s [ ’ copyCatList ’ ]
e l i f succ in ampList :

s h i f t = t o x i c i t y_ s h i f t s [ ’ ampList ’ ]
e l i f succ in a t t enL i s t :

s h i f t = t o x i c i t y_ s h i f t s [ ’ a t t enL i s t ’ ]
else :

s h i f t = 0

for key , va l in va lue s [ node ] . i tems ( ) :
key_new = round( key − s h i f t , 8)
i f key_new > 1 :

key_new = 1
e l i f key_new < 0 :

key_new = 0
va lue s [ succ ] [ key_new ] = va lues . get ( succ , {}) . get (key_new , 0) +

( va l )
va lue s [ node ] = {}

Listing 7.2: Simulating and Capturing the Spread of Toxicity in a Graph
- Decay Model

def simulate_decay (G, copyCatList , a t t enL i s t , ampList , timestamp ,
plotTotalSumofTox = [ ] , plotAvgToxPerUser = [ ] , plotAvgToxPerTweet =
[ ] , plotTimestamp = [ ] ) :
va lue s = {node : {} for node in G. nodes ( ) }
va lue s [ 1 ] = {( tox_value , in fromation_value ) : tweet_count}

for t in range ( timestamp ) :
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tota l_va lue = 0
tweet_count = 0
for node_values in va lue s . va lue s ( ) :

for key , va l in node_values . i tems ( ) :
tota l_va lue += key [ 0 ] ∗ va l
tweet_count += val

avgToxPerUser = tota l_va lue / len ( va lue s . keys ( ) )
# avgToxPerTweet = to t a l_va l u e / tweet_count

plotTotalSumofTox . append (round( tota l_value , 2) )
plotAvgToxPerUser . append (round( avgToxPerUser , 2) )
# plotAvgToxPerTweet . append ( round ( avgToxPerTweet , 2) )
plotTimestamp . append ( t )

print ( f "{ t } : ␣{ va lue s } , ␣ t o t a l ␣sum␣ o f ␣ tox␣−␣{round ( tota l_value , 2 )
} , ␣avg␣ tox␣per ␣ user ␣−␣{round ( avgToxPerUser , 2 ) }" )

new_nodeList = [ ]
for node in G. nodes ( ) :

i f va lue s [ node ] :
new_nodeList . append ( node )

for node in new_nodeList :
keys_to_delete = [ ]
for succ in G. su c c e s s o r s ( node ) :

s h i f t = None
i f succ in copyCatList :

s h i f t = t o x i c i t y_ s h i f t s [ ’ copyCatList ’ ]
e l i f succ in ampList :

s h i f t = t o x i c i t y_ s h i f t s [ ’ ampList ’ ]
e l i f succ in a t t enL i s t :

s h i f t = t o x i c i t y_ s h i f t s [ ’ a t t enL i s t ’ ]
else :

s h i f t = 0

for key , va l in va lue s [ node ] . i tems ( ) :
# pr in t ( f "{ key } , { va l }")
rand_val = random . random ( )
i f rand_val <= key [ 1 ] :

key_new = (round( key [ 0 ] − s h i f t , 2) , round( key
[1 ] −0 .1 , 2) )

va lue s [ succ ] [ key_new ] = va lues . get ( succ , {}) . get
(key_new , 0) + ( va l )
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else :
print ( f "DELETING␣VALUE␣−␣{key}␣ from␣{node}" )
keys_to_delete . append ( key )

for key in keys_to_delete :
i f key in va lue s [ node ] :

del va lue s [ node ] [ key ]

# pr in t ( va l u e s )
va lue s [ node ] = {}
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List of Algorithms

1 Compute Toxicity in a Twitter Retweet Network . . . . . . . . . . . . 22
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